
To appear in ECOOP ‘93 Proceedings, Springer Verlag Lecture Notes on Computer Science.

Integrating

Independently-Developed Components

in Object-Oriented Languages

Urs Hölzle

Computer Systems Laboratory

Stanford University

urs@cs.stanford.edu

Abstract. Object-oriented programming promises to increase programmer

productivity through better reuse of existing code. However, reuse is not yet

pervasive in today’s object-oriented programs. Why is this so? We argue that

one reason is that current programming languages and environments assume

that components are perfectly coordinated. Yet in a world where programs

are mostly composed out of reusable components, these components are not

likely to be completely integrated because the sheer number of components

would make global coordination impractical. Given that seemingly minor in-

consistencies between individually designed components would exist, we ex-

amine how they can lead to integration problems with current programming

language mechanisms. We discuss several reuse mechanisms that can adapt

a component in place without requiring access to the component’s source

code and without needing to re-typecheck it.

1 Introduction

Object-oriented programming promises to increase programmer productivity through

better reuse of existing code. In the ideal scenario envisioned by the object-oriented

community, future programs would be mostly composed out of preexisting components

rather than rewritten from scratch: “[Programmers will] produce reusable software

components by assembling components of other programmers” [Cox86]. Reusing ex-

isting, tested code simultaneously reduces the effort needed to create new applications

and improves the quality of the resulting programs.

However, this ideal scenario has not yet become reality: today, many programs

are still mostly written from scratch, and there are few commercially available building

blocks that could be reused in new applications. Clearly, the envisioned market for soft-

ware ICs [Cox86] has not materialized yet. Writing reusable components and frame-

works is hard [Deu83, OO88, OO90]. Furthermore, the few successful reusable compo-

nents built so far (such as Interviews [LVC89] and ET++ [WGM88]) are relatively

monolithic frameworks, and components are often hard to combine with other compo-

nents [Ber90]. Why is this so? Why hasn’t the dream of pervasive reuse been realized

yet?

In this study we try to answer this question and come to the conclusion that one

reason is that current programming languages (and programming environments) are not



2

very well equipped to handle the subtle integration problems likely to occur with per-

vasive reuse. To illustrate our point, we envision a futuristic world where reuse is indeed

pervasive and where programs are mostly composed out of reusable components. We

then argue that in such a world components would not be likely to be completely inte-

grated because the sheer number of components would make global coordination im-

practical. Given that minor inconsistencies between individually designed components

would always exist, we examine how these inconsistencies can lead to problems when

combining the components, and how such problems could be overcome.

The paper is divided into two parts. In the first part, we clarify our assumptions

and present a simple example of an integration problem caused by a few small incon-

sistencies. We then try to solve this problem using mechanisms present in many current

object-oriented languages (composition, subtyping, and multiple dispatch) and show

that none of these approaches completely succeeds in solving the problem.

In the second part, we argue that a broader view of reuse should be adopted, a

view that includes an imperfect world where component interfaces are not completely

coordinated. Programming languages and environments need to provide mechanisms

that allow the programmer to make small changes to component interfaces without hav-

ing access to the components’ source code, and components should be delivered in a

form that allows such modifications. We discuss several possible approaches that prom-

ise to solve integration problems and thus might bring us one step closer to a world of

pervasive reuse.

2 Assumptions

Our study is based on four premises:

• that programs will be composed out of existing components,

• that such components were designed independently, and are sold by independent

vendors,

• that a component’s source code cannot or should not be changed, and

• that programs are written in a statically-typed language.

The first premise is one of the primary goals of object-oriented programming. We will

assume that a large portion of new programs (say, more than 90%) consists of reused

components. Thus, relatively little time is spent writing new code, and most of the pro-

gramming effort lies in combining reusable components. Therefore, it is imperative that

components can be combined easily so that programmer productivity is maximized.

The second premise follows from the first: if programs consist mainly of reused

code, there must be many reusable components (thousands or tens of thousands), and,

assuming a free market, these components must have been designed by many different

organizations and vendors. Thus, it is very likely that many components were designed

independently, without knowledge of each other. Even if a component vendor tried to

be compatible (in some sense of the word) with other components, the sheer number of

different components would make it impractical to verify compatibility for all combi-

nations. Therefore, it may well be that a new application is the first application to com-

bine two particular components, and that these two components are not perfectly well-



3

integrated with each other. Many vendors will probably integrate their own components

into frameworks, but this does not fundamentally change our assumption: there will be

hundreds of frameworks, and as soon as an application reuses two or more independent

frameworks, integration problems are likely to occur.

The third premise follows from the desire for incremental change: “Adding new

code is good, changing old code is bad” [Lie88]. It is motivated by pragmatic necessity:

vendors may not be willing to make their source code available to clients, and even if

source code is available, it is desirable not to change the source in order to stay compat-

ible with future versions of the component. If components become much more widely

used than today, it will be even more important not to rely on any internal details of the

components, or else tracking new versions of the tens or hundreds of components used

by an application will become a software maintenance nightmare.

Finally, we are concerned only with statically-typed languages using subtype

polymorphism [CW85], because these languages are so widely used and because static

typing is often viewed as necessary for building reliable large systems (see, for exam-

ple, [CC+89]). However, many of the problems we discuss also apply to dynamically-

typed object-oriented languages (see section 5.1).

3 The Problem: Inconsistent Components

Assume that we are writing an application using the components A, B, and C, each of

them bought from a different vendor. The simplified interfaces of the types offered by

the components are shown below:

type BaseA { “BaseA is the supertype of all objects in component A”

method print();

methods mbasea1, mbasea2,...

}

type SubA: BaseA { “One of many subtypes of BaseA”

methods msuba1, msuba2,...

}

type BaseB { “BaseB is the supertype of all objects in component B”

method printPart1(); “prints one part of a BaseB object”

method printPart2(); “prints the other part of a BaseB object”

methods mbaseb1, mbaseb2,...

}

type SubB: BaseB { “One of many subtypes of BaseB”

methods msubb1, msubb2,...

}

type BaseC { “BaseC is the supertype of all objects in component C”

method drucke(); “‘drucke’ is German for ‘print’”

methods mbasec1, mbasec2,...

}



4

type SubC: BaseC { “One of many subtypes of BaseC”

methods msubc1, msubc2,...

}

Now suppose that we need to integrate objects derived from BaseA, BaseB, and BaseC

in our application. For example, we would like to write a method that takes any object

of the application and prints it on the screen. That is, we would like to create a common

supertype Printable for BaseA, BaseB, and BaseC:

The three components are only superficially incompatible because the desired

functionality is already present: BaseA has a print method, BaseB has two public print-

Part methods that together would form a valid print method, and BaseC also has a print-

ing method, albeit with a different name (component C was bought from a German sup-

plier). However, since the components were developed independently of each other,

they were not derived from a common supertype. Therefore, the three components can-

not be integrated in a straightforward way in our application.

One might argue that the integration problem would not exist if the components

were “well-designed” from the start, that is, if the component designer had created the

“right” type hierarchy. However, we believe it is unlikely that such perfection would be

common in the component market of the future. Even if some components achieved

near-perfect status over time, users discovering flaws in the type factorization would

still have to wait for the component provider to release a revised hierarchy. More im-

portantly, different users may well have conflicting requirements. For example, in a type

hierarchy representing cars, one user may want to have subtypes representing sports

cars, off-road vehicles, vans, etc., whereas another user needs subtypes for US-built

cars, Japanese cars, and European cars. If the component provider attempted to reify all

possible types and type factorizations, users would be overwhelmed by a myriad of

types, most of which they don’t need. Finally, components cannot be viewed in isola-

tion: even if all components are internally consistent and well-designed, their combina-

tion may not be consistent [Ber90]. Programs are likely to combine many different

components or component frameworks, making perfect harmony unlikely.

However, it should be emphasized that we do not assume complete “anarchy” or

lack of any standardization. On the contrary, we assume that developers will do their

very best to make their components reusable and easy to integrate with other compo-

nents. That is, we assume that the components we would like to reuse are almost com-

patible—but a few details are not: a method is missing, another method takes the

“wrong” type of argument, etc. We believe that such minor inconsistencies are inevita-

Printable

BaseA BaseB BaseC



5

ble in any large-scale component market: a component provider simply cannot foresee

all possible situations in which the component could be reused.

4 Integration Using Composition

Composition is a well-known approach to solve problems similar to our example. With

composition, we define three wrappers, each of which contains a pointer to an object of

the respective base type. For example, WrapperA would contain a BaseA object:

type WrapperA : Printable {

a: BaseA; “a holds the real object created by component A”

method print(); “invokes a.print”

}

Instead of arranging the objects of the three components in a subtype relationship, we

arrange the wrappers in the proper relationship:

Each wrapper forwards the desired messages to the actual component object. In addi-

tion, WrapperC effectively renames the drucke method by calling it from its print meth-

od. Similarly, WrapperB synthesizes a print method using printPart1 and printPart2.

In essence, wrappers isolate the core of our application from the type hierarchies

of the components. Using wrappers, we have created an alternate view of the type hier-

archy presented by the components—instead of dealing with BaseA objects, the appli-

cation only deals with the wrappers.

4.1 Problems with Wrappers

So far, we have considered only one side of wrappers, namely the unwrapping process

that translates wrappers into component objects (arrows going from left to right). In ad-

dition, we also have to do the wrapping: whenever a component function returns an ob-

ject, it has to be wrapped before it is passed back to the application (arrows going from

right to left). Unfortunately, as in real life, wrapping is more difficult than unwrapping.

We could create a new wrapper whenever an object needs to be wrapped, inde-

pendently of whether another wrapper for that particular object already exists or not. In

this “functional style” of wrapping, multiple wrapper objects can exist for a single com-

Printable

WrapperA WrapperB WrapperC

Application wrappers
real

objects



6

ponent object, which creates a problem in languages allowing pointer equality. Pointer

equality cannot be used in the presence of “functional” wrappers because two wrappers

may appear to be nonequal even though they denote the same object. Therefore, wrap-

pers are no longer transparent unless pointer equality is strictly avoided. This restriction

is simple to enforce in pure object-oriented languages like SELF [US87] where equality

is a user-defined operation rather than a pointer comparison, so that we can define equal-

ity of wrappers to be equality of the wrapped objects. However, pointer equality is com-

monly used in many other languages (e.g., C++ [ES90]). In such languages, “function-

al” wrappers require strict coding discipline, thereby introducing the possibility of pro-

gramming errors.

Also, functional wrappers can cause performance problems because a new wrap-

per object is allocated for every object returned by a component. If a certain component

method is called a million times, a million wrappers will be created even if the method

always returns the same component object.

To avoid these problems, wrappers could be canonicalized. With canonicalized

wrappers, exactly one wrapper exists per component object, and thus only the minimum

number of wrappers is created. Comparing the pointers of two wrappers gives the same

result as comparing the component objects themselves, so that pointer equality does not

create problems. Unfortunately, canonicalization is expensive: every time an object is

returned by a component method, we have to check a dictionary to see if the object al-

ready has a wrapper. If the object is new, we must create a new wrapper and enter it into

the dictionary. Thus, each invocation of a component function incurs at least one dictio-

nary lookup, an overhead that will be unacceptable for many applications. Furthermore,

both kinds of wrappers could introduce additional run-time overhead because each

method invocation on a component object involves at least one additional call (to in-

voke the wrapper method itself).

Wrappers introduce additional redundancy into the system because they duplicate

part of the interfaces of the components. Therefore, if a component interface changes,

additional work is required to adapt the program. While this code duplication is unde-

sirable, it is not as bad as it seems. Much of this duplication could be automated: the

programming environment could construct the wrappers automatically (with some help

from the programmer in case of renaming etc.) and keep track of the relationship be-

tween the components and their wrappers. When a component interface changes, the

wrapper could be updated automatically.

4.2 Even more Problems with Wrappers

Even though the performance problems caused by wrappers can be severe, wrappers

could still be practical if their use could be restricted to a few small areas in the program,

so that the overall performance impact would be small. Unfortunately, this is not very

likely to happen: wrappers have a tendency to spread, “infecting” everything they

touch. An example will illustrate this point: suppose that a method defined in compo-

nent A returns a list of objects rather than a single object. In this case, we are forced to

wrap the list in order to prevent the application from seeing the “naked” component ob-

jects contained in the list! (The list wrapper would then wrap the individual component

objects whenever they are retrieved from the list.)



7

It would appear that we would not need a wrapper for the list if we wrapped the

list elements instead. However, this is not possible in general. For example, if a returned

list represents the objects in a graphical editor, removing an element from the list would

have no effect on the editor if we had copied the list and created a new list of wrapped

objects rather than a wrapped list. (We need to create a new list because we cannot re-

place the objects with their wrappers in the original list since the wrappers are not sub-

types of their respective component type.)

So, even though we wanted to wrap only the objects of component A, we ended

up having to create a wrapper for a generic data type, the list. Even worse, if component

B also used lists we would have to create a second wrapper for lists of BaseB objects.

More realistic components probably would use many other data structures, all of which

may have to be wrapped as well.

In languages without delegation (i.e., most current languages), wrappers have an

additional limitation: they cannot be used to override a methods of the wrapped compo-

nent object. For example, suppose in our application we needed to override print in

BaseA to add a few blanks before the actual printout. This will work fine if print is only

called from our own code, but not if it is called indirectly (as a result of invoking some

other component method). That is, any existing component method that sends print will

invoke the original print method because the receiver will be a component object, not a

wrapper.

By now it should have become clear that our attempt to solve the integration prob-

lem with wrappers is not entirely satisfactory. Wrappers can solve some integration

problems, but using them may require a large number of wrapper types and can intro-

duce potentially severe run-time and space overheads. Inserting wrappers into a pro-

gram can be a tedious process, and programs using wrappers are often harder to under-

stand and therefore harder to maintain.

The problems with wrappers appeared because we tried to hide the real objects

from the application in order to solve the typing inconsistencies between the compo-

nents. But introducing separate wrapper objects for the real objects forced us to main-

tain the new invariant that the application must never interact directly with the real ob-

jects; all interactions must go through the wrappers. Maintaining this indirection is te-

dious and potentially expensive in terms of execution time or space. To eliminate these

problems, we somehow have to unify the wrapper with the real object. In other words,

we have to change a component object’s type without losing the object’s identity. The

next section examines several such approaches.

5 Integration Using Typing Mechanisms

Typing mechanisms can be used to view an object from different viewpoints. For exam-

ple, in any language with subtyping, an object of type SubA can also be viewed as being

of type BaseA. To solve the integration problem, we would like to view, for example, a

SubA object as being of type Printable. This chapter discusses how typing mechanisms

of existing languages can be employed to this end.



8

5.1 Implicit Subtyping

Implicit subtyping, as used in some programming languages (e.g., POOL-I [AL90] and

Emerald [RTK91]), can be very helpful in integrating different components. With im-

plicit subtyping, the subtyping relationships need not be declared explicitly but are in-

ferred by the system. In our example, Printable is a valid supertype of BaseA, and the

system automatically detects this relationship. Therefore, we can pass a BaseA object

as the actual parameter to a method expecting a Printable object.

In essence, implicit subtyping allows us to extend the explicit type lattice (i.e., the

types created and named by the programmer) after the fact, without changing the actual

implicit lattice (formed by all possible sub- and supertypes of all types occurring in the

program). BaseA and SubA are two nodes in a much larger type lattice, and implicit sub-

typing allows us to reify and name any node in this lattice. For example, there is a type

between BaseA and SubA whose interface contains msuba1 but not msuba2. The origi-

nal designer of component A chose not to reify this type because it did not seem useful,

but for our application it might very well be needed. Similarly, Printable is an implicit

supertype of BaseA which the original component designer chose not to reify. It is well

known that reusable class hierarchies tend to be factored into smaller and smaller pieces

with each design iteration because users discover new possibilities for reuse if certain

behaviors are factored out [OO90]. Implicit subtyping allows the (re)user of a compo-

nent to perform this refactoring without waiting for the component provider to do so,

and without changing the component itself.

The value of not having to explicitly name every possibly useful type becomes

obvious as soon as one tries to name them. For example, Johnson and Rees propose to

improve reusability through fine-grain inheritance by methodically splitting up the ex-

plicit class hierarchy into small pieces so that reusers can pick the pieces from which

they want to inherit [JR92]. But in the example they present, a simple List class is split

up into a complex multiple-inheritance hierarchy involving 25 different classes, only

one of which (List) is usually needed. Implicit subtyping allows the programmer to

avoid confusing the reusers with such a myriad of types while at the same time retaining

all of the flexibility.

For all its benefits, implicit subtyping is only a limited solution to the integration

problem. For example, it cannot overcome problems caused by misnamed methods

(e.g., drucke in BaseC) or missing methods that could be synthesized out of existing

methods (e.g., print for BaseB). Furthermore, implicit subtyping is not very popular: no

major object-oriented language offers it, probably because it is often perceived as weak-

ening type checking since it may establish a subtype relationship in cases where there

is no semantic relationship (for example, Cowboy isn’t a subtype of Drawable even

though it has a draw method [Mag91]).

Interestingly, with respect to the integration problems discussed here, dynamical-

ly-typed languages are quite similar to statically-typed languages with implicit subtyp-

ing. In dynamically-typed languages, the subtyping relationships among objects are im-

plicit and checked lazily (and a “message not understood” error is produced at runtime

if an object does not have the required type). Therefore, a type like Printable implicitly

exists (though it is not reified), and the programmer can write methods that take any



9

“printable object” as an argument. Since the types are implicit and need not be statically

checkable, dynamically-typed languages have a certain advantage. For example, types

can be more flexible (“if the receiver is a positive number, the argument must be print-

able, otherwise it can be anything, since no message is sent to it”). More importantly, it

is not possible for a programmer to accidentally overconstrain the type of an argument

(e.g., to specify Integer where Number would suffice), and thus a dynamically-typed

component will probably be somewhat more reusable. However, dynamically-typed

languages usually cannot solve problems caused by misnamed or missing methods.

5.2 Multiple Subtyping

Multiple subtyping can ameliorate some integration problems even if the language uses

explicit rather than implicit subtyping. The idea is similar to wrappers, except that we

create a new subtype for every component type instead of creating a wrapper type. The

subtype mixes in [Moo86, BC90] the desired interface in addition to inheriting the com-

ponent type’s interface. In our example, the type hierarchy would look as follows:

If our application created only NewSubA objects instead of SubA objects, we would

have solved the integration problem: since NewSubA is a subtype of BaseA, the objects

could be passed to all component methods expecting SubA or BaseA objects, and since

NewSubA…C are subtypes of Printable we could also use the objects with all applica-

tion methods expecting Printable objects.

While this solution appears to work for our simplistic example, it has a serious

flaw that significantly reduces its usefulness in realistic applications: it requires that we

create only NewSubA objects, and no SubA objects. Unfortunately, we do not have con-

trol over all object creations; usually, SubA objects would be created (and returned) by

functions within component A, since the component was written before NewSubA was

created. These objects would not fit into our type hierarchy and therefore could not be

passed to methods expecting Printable objects. In essence, we are encountering the

wrapping problem again, this time using subtyping rather than composition.

If the programming language allowed explicit type coercions, we could create

“type wrapper” methods that coerce the result value to NewSubA for all component

methods returning SubA objects. However, we are not aware of any popular object-ori-

ented language that would allow this. In languages offering checked type narrowing

(such as Eiffel [Mey91] and BETA [KM+87]), we cannot perform the narrowing be-

cause these operations check the object’s true type (the creation type). That is, the nar-

rowing tests if the object was created as a NewSubA object, not whether it conforms to

BaseA

SubA

NewSubA

BaseC

SubC

NewSubC

BaseB

SubB

NewSubB

Printable



10

the NewSubA type. Of course, such a test would fail because the object was created with

type SubA. In fact, even in a language with implicit subtyping where the narrowing

mechanism checked interface conformance, it would still not be sufficient. For exam-

ple, NewSubB contains the print method which is not present in SubB, and thus a coer-

cion from SubB to NewSubB would fail. Coercion mechanisms cannot solve our prob-

lem because we need to truly extend both the interface and (though trivially) the imple-

mentation of an existing component object, rather than just revealing more information

about an object’s preexisting interface and implementation.

5.3 Factory Objects

Multiple subtyping didn’t solve our problems because we had no control over the ob-

jects created by component methods. Fortunately, there is a way to solve this problem

at least partially. The idea is to introduce a level of indirection at every object creation.

Instead of directly creating an object (“obj = new SubA”), every object is created via a

call to a factory object (“obj = factory->createSubA()”). Linton originally proposed this

technique to better encapsulate the InterViews library [Lin92], but it is also very useful

to solve integration problems. If the factory object is exposed to the (re)user, we can re-

place the standard factory with our own version creating NewSubA objects rather than

SubA objects. Since the object creation types are no longer hardwired in the code, we

regain control over the objects created by component methods and can substitute our

slightly modified types for the original ones.

However, this solution is still far from ideal. In our example, to make components

“printable” we have to introduce a large number of classes (on per concrete component

class). Each of these classes must duplicate the interface of corresponding component

class: although the objects now have the correct creation type, we must still write “type

wrapper” methods to convert returned objects. For example, if SubA has a method get

that returns a SubA object, we need to override get in NewSubA to return a NewSubA

object (the method just calls the original one and coerces the result object to NewSubA).

Unfortunately, changing the result type of a method is impossible in some languages

(notably C++), thus crippling the factory object approach in those languages.

Besides adding a considerable amount of code, factory objects may also slow

down execution. Every object creation involves an additional dynamically-dispatched

call, and most method invocations on component objects also involve an additional call

through the “type wrapper” method and a type test for the result coercion (assuming

checked coercions). Of course, all reusable components would have to use factory ob-

jects, but we assume that component vendors would be happy to enforce this program-

ming convention since it makes their components more reusable.

This observation leads us to a serious problem. Suppose that vendor High sells a

package that adds higher-level functionality to the more basic functionality of the SubA

component sold by vendor Low. To smoothly integrate the Low objects into its code,

vendor High has replaced Low’s factory object as suggested above. But if we also need

to replace Low’s factory object for our own purposes, we are stuck: how can we merge

High’s changes to the original factory object with our changes? The table below shows

the original factory (Low’s), the changed factory (High’s), and the factory we’d like to

use ourselves. High has changed the entry for making SubA objects to solve an internal



11

conflict in the High library, so now it returns HighSubA objects. This creates several in-

tegration problems. For example, what should the new makeSubA entry be? High ex-

pects HighSubA objects, but we need NewSubA objects so that these objects have the

Printable interface. The problem is that we may not know type HighSubA since it is

probably a private type that High does not wish to expose, and even if we did we may

not be able to use it because it may introduce conflicts into our type hierarchy (e.g., it

may define its own print method with an incompatible signature).

In general, it will be hard to use more than one component that replaces Low’s

factory object because there may be no factory object simultaneously satisfying all

component’s needs for “replacement types.” Furthermore, the order of changes to fac-

tory objects must be coordinated carefully so that no component overwrites the changes

made previously by another component. In other words, though factory objects can

solve some simple problems, they do not appear to scale well.

5.4 Multimethods

Multimethods (also called generic methods) [DG87] are relatively new in statically-

typed languages [ADL91, Cha92]. With multimethods, the message lookup may in-

volve all arguments, not just the receiver. Since multimethods are dispatched on multi-

ple arguments, they are not “contained” in a single class, and thus are in some sense in-

dependent of the class or type hierarchy (but see [Cha92]). We can use this indepen-

dence to modify a component without changing the component itself. For example, by

defining a method print specialized for arguments of type BaseB we effectively add a

print method to BaseB. By defining an additional print method specialized for BaseC

arguments, we have a multimethod print for all component objects, solving our problem

without introducing a new Printable type.

Unfortunately, we must pay a heavy price to avoid introducing the type Printable.

Because the various component objects still have no common supertype, we need to

write three versions of every method that conceptually takes an argument of type Print-

able—one version specialized for BaseA objects, one for BaseB and one for BaseC.

That is, instead of writing one method we need to write three. Even worse, if we’d like

to write a method that takes two arguments of type Printable, we must implement nine

methods, one for each pair in the Cartesian product of the possible actual argument

types. In addition to these code duplication problems, a solution with multimethods is

not as readable as we’d like because the abstraction Printable is not reified in the pro-

gram, making it harder to understand the resulting code.

If it were possible to create and name types that are sets of other types or classes

and to specialize multimethods on types (not classes), the combinatorial explosion of

multimethods could be avoided. For example, we could create the type Printable as the

set containing BaseA, BaseB, and BaseC, and specialize the print multimethod on this

Entry Low’s factory High’s factory Our factory

makeBaseA BaseA BaseA Printable

makeSubA SubA HighSubA NewSubA



12

type. However, we are not aware of any language that allows dispatching of multime-

thods on types.

Finally, multimethods also could not solve our problem if the underlying lan-

guage allowed the sealing of types [App92]. A sealed class cannot be subclassed, and a

sealed type cannot be specialized further. Sealing would prevent the programmer from

creating new generic methods that dispatched on a sealed class or type. Sealing has

mainly been proposed for implementation reasons [App92] to allow the compiler gen-

erate better code, but also as a software engineering mechanism to prevent “internal”

classes from being subclassed [KM+87].

6 Discussion

Our study has led us to a surprising result: even our very simple example creates inte-

gration problems that cannot be solved easily with the language mechanisms present in

current statically-typed object-oriented languages. Both traditional reuse mechanisms,

composition and subtyping, do not fare well in our scenario. Composition (the wrappers

approach) needs a significant amount of extra code and can lead to potentially serious

performance problems. Subtyping, whether implicit or explicit, provides only a partial

solution, and multimethods introduce code duplication. In other words, current statical-

ly-typed object-oriented languages do not appear to support reuse of independently de-

veloped components well.

This result can be (mis-)interpreted in several ways:

• “Pervasive reuse is only possible if all components are standardized so no inte-

gration problems occur.” We believe that this conclusion would be equivalent to

concluding that pervasive reuse is impossible. The complete integration of thou-

sands of components into a coherent framework does not appear to be practical in

the near future. The standardization of software components is sometimes being

compared to the standardization of components in the building industry, or to

standardized interfaces between HiFi components. We believe that this analogy

is flawed because such interfaces are simple, self-contained, and “flat,” whereas

software interfaces are much more complicated, interrelated, and “deep.” For ex-

ample, a software component may be unusable if it is embedded in the “wrong”

type hierarchy even though it offers the correct “flat” interface. Of course, this

does not mean that standardization attempts are futile or undesirable, but such at-

tempts are likely to be time-consuming and to eliminate only some (but not all)

integration problems. If pervasive reuse of software is to become reality, we must

find a more practical solution to the integration problem.

• “Editing the source code of components isn’t so bad; after all, it’s the only prac-

tical way to achieve pervasive reuse.” This “pragmatic” interpretation contradicts

one of our basic assumptions, and we feel that it is not justified. While editing the

source code of components can solve the problems presented in this paper, it re-

quires access to source code and produces a major software maintenance problem

(tracking new revisions of the component). One of the goals of reuse is to reduce

the cost of software development, and introducing such maintenance problems

does not seem compatible with that goal.



13

• “Programs should be compact. Integration problems appear between (not within)

programs, and such problems should be solved with systems integration languag-

es, not programming languages.” It is undoubtedly true that integration problems

also occur on the inter-application level. However, if we cannot solve the integra-

tion problems within programs, overall productivity is unlikely to improve very

much since most of the development effort lies in writing applications rather than

in systems integration. Furthermore, if the inter-application interface is statically

typed as well, application reusers will face the same problems that component re-

users face—pushing the problem to a higher level doesn’t make it disappear.

However, application interfaces will probably be more standardized since they

are coarser and fewer. Also, wrappers become more viable since the inter-appli-

cation communication bandwidth is likely to be lower than the inter-component

bandwidth so that the performance problems caused by wrappers are less severe.

We believe there is no single cause for the integration difficulties encountered with cur-

rent languages and systems. However, the first and foremost culprit may be that the in-

tegration problem often is not acknowledged at all. Programming language designers

seem concerned mostly with possibly large but well-integrated single applications rath-

er than with applications composed out of a multitude of preexisting components. That

is, they assume that component interfaces are well-coordinated and can be adjusted if

necessary.

Another problem is that the traditional view of reuse overemphasizes compiled-

code reuse (“Look, Ma, no changes!”), leading to several problems that can compro-

mise widespread reuse. The unwillingness to recompile code can lead to rigid, less

adaptable components and precludes many approaches that could modify a component

without relying on internal implementation details. Because there is only one version of

the object code, programmers face a dilemma between flexibility and performance. If

the object code is kept flexible, it cannot be optimized as much; if it is highly optimized,

flexibility suffers because many design parameters are hardwired in the code. For ex-

ample, current compiled-code-oriented systems often use impure interfaces that expose

implementation information in order to obtain better performance, thereby severely

compromising reusability [HU92].

We wish to emphasize reuse in a broader sense, where reuse equals saved pro-

gramming effort. Programming time is much more important than compilation time be-

cause the computational power needed for recompilation becomes cheaper and cheaper

every year whereas the programmer’s time does not.† Of course, reuse mechanisms

must be practical in terms of the machine resources they require. But the overriding goal

of reuse should be to increase programmer productivity, and we should not constrain

our search for better reuse mechanisms a priori to mechanisms that preserve compiled-

code reuse (see [Szy92] for a similar argument).

† This is not to say that compilation time isn’t an important factor influencing program-

ming productivity. But even with today’s hardware, a well-engineered compiler can

compile several thousand lines of code per second [Tem90]. The problem is that most

compilers are not tuned for compilation speed.



14

To summarize, we believe that a programming language / environment combina-

tion needs to provide the following functionality to be successful in a world of pervasive

reuse:

• Component types and type hierarchies should be changeable within certain

bounds so that component reusers can integrate one component with another. That

is, it should be possible for the reuser to change the component types directly,

without first introducing new subtypes or subclasses.

• This flexibility must be provided without requiring source code access to the com-

ponent’s implementation, and it should not compromise the efficiency of the re-

sulting programs.

How this functionality is best provided, and whether it is provided directly by the pro-

gramming language (type system) or by the programming environment, remains an

open question.

7 Towards a solution

In view of this broader concept of reuse, this section discusses several possible ap-

proaches that promise to overcome the integration problem and to increase reuse.

7.1 Type Adaptation

A straightforward approach, which we call type adaptation, is to allow the programmer

to change given interfaces in a restricted way after they have been delivered as a com-

ponent. The interface changes must not invalidate the component’s type structure (e.g.,

the subtype relationships must be preserved), but this restriction still allows many use-

ful adaptations:

• New types can be added to the type hierarchy (for example, a common supertype

Printable). As with implicit subtyping, this allows the programmer to reify types

that are implicitly already present in the component’s type lattice.

• Types can be complemented with new methods (e.g., a print method for BaseB

calling printPartial1 and printPartial2) and new instance variables. Of course, the

added methods do not have access to any internal implementation details of the

component, and they may not conflict with existing public methods.† (In a lan-

guage separating types and classes, complementing a type means adding the

methods to all classes that implement the type.)

• Operations can be renamed to make the component compatible with others (in our

example, drucke could be renamed to print).

† This also requires that the public (external) and private (internal) name spaces are kept

separate. Then, adding a public method print does not create a name conflict even if the

component’s implementation already has a private method print. The two print methods

are completely separate; no method added through type adaptation could call (or even

name) the private print method, and no method in the component’s implementation

could call the new public print method (which didn’t exist when the component imple-

mentation was written).



15

Since type adaptation augments types “in place,” it causes none of the problems asso-

ciated with wrappers or subtyping. No additional objects or type hierarchies are created,

and all objects created within the component automatically have the augmented type

(and no object has the original unchanged type). Furthermore, since the changes do not

depend on internal component details (and vice versa), the component implementation

could be replaced by the vendor with a newer version without causing adaptation prob-

lems for customers using type adaptation. Similarly, because the component’s implicit

type hierarchy does not change, the component implementation need not be re-

typechecked after the changes. A variant of type adaptation would also be useful for dy-

namically-typed languages, where it would adapt objects (e.g., classes or prototypes)

rather than types.

Adapting a component interface does not require access to the source code of the

implementation. For example, a component could be distributed in an architecture-neu-

tral intermediate format (such as ANDF [OSF91]) that contains all type information

needed by a type adaptation system (but no source code) and could be translated into

optimized machine code. In this intermediate form, the component’s implementation

need not hardwire the exact storage layout or dispatching mechanisms like machine

code would. For example, introducing additional supertypes may change the optimal

message dispatching strategy relative to the original component and would therefore be

hard to implement if components were delivered as object code. With an intermediate

format, the optimal dispatching strategy could still be used because machine-code gen-

eration is deferred until reuse time. Thus, we could eliminate the dilemma between flex-

ibility and efficiency because the machine code can be customized for each application.

 A more detailed discussion of the implementation of such an intermediate format

is beyond the scope of this paper. More research is probably needed to investigate its

practicality, but it appears that the implementation could leverage off already existing

intermediate formats aimed at cross-architecture portability, such as the commercial

ANDF format mentioned above.

7.2 Extension Hierarchies

Ossher and Harrison have proposed a mechanism called extension hierarchies [OH92]

that is similar to type adaptation. Even though their description emphasizes extension

rather than adaptation, extension hierarchies seem well suited to solving the integration

problem. The basic idea is to combine a base hierarchy (= component) with sparse ex-

tension hierarchies containing changes, additions, and deletions. Extensions are mod-

elled as operators and can be combined to form new extensions; both sequential com-

bination (applying one extension, then another) and parallel combination (merging two

extensions) are supported. Extension hierarchies are more general than type adaptation

since they allow arbitrary changes that are not necessarily interface-preserving, and be-

cause they can be used to extend implementations as well as interfaces. Also, extension

hierarchies are a programming environment mechanism rather than a language mecha-

nism.

We believe that extension hierarchies hold much promise. While we do not agree

with all aspects of the particular variation proposed in [OH92] (for example, the authors

strictly avoid recompiling code after extensions are applied), extension hierarchies can



16

solve many integration problems in a straightforward way. In our example, we could de-

fine an extension for each component to insert the Printable supertype. Since the exten-

sions are kept separate from the base component, they can be reapplied automatically

to newer versions of the components (as long as the component’s interfaces do not

change).

In general, extension hierarchies require full source-code access to apply an ex-

tension. To integrate a component, a programmer would change it, and the changes

form the extension. Later, when a newer version of the component is delivered (ideally

in the form of an extension to the previous version), the two extensions would be com-

bined to form the new integrated component. However, the two extensions may conflict,

and the conflicts will have to be resolved by the programmer, creating the maintenance

problem we wished to avoid with our “no source changes to reused components” policy.

That is, if extension hierarchies are used in their full generality, they can create prob-

lems similar to conventional change management systems. Therefore, we believe that

an extension hierarchy system would have to be used in a restricted way to solve inte-

gration problems, so that extensions would only perform the modifications allowed by

type adaptation. The system would probably contain an automatic “extension checker”

to verify that an extension conforms to the rules of type adaptation. Passing this check

would guarantee that an extension could be combined without conflicts with “update

extensions” provided by the component’s manufacturer, as long as the package’s public

interface is not changed by the manufacturer. In essence, the extension checker would

thus represent a type adaptation subsystem implemented within an extension hierar-

chies system.

7.3 Other Related Work

A mechanism very similar to type adaptation (called enhancive types) was proposed by

Horn [Hor87]. However, unlike type adaptation, enhancive types do not change types

in place but instead allow a base type to be coerced into another type (the enhanced

type) that offers additional operations implemented in terms of the base type’s public

methods. Horn’s paper also discusses in more detail why the original methods of an en-

hanced type need not be re-typechecked. Unfortunately, the paper was couched in the-

oretical terms as an extension to constrained genericity, and the idea has largely been

overlooked in programming language design.

Sandberg’s descriptive classes [San86] are the first example of types that could be de-

clared after the classes that were their subtypes. The usefulness of creating new super-

classes for existing classes was discussed in detail by Pedersen [Ped89] and implement-

ed in Cecil by Chambers [Cha93a]. Predicate classes [Cha93b] offer yet another way

to extend objects, although this isn’t their intended use. Opdyke [Opd92] defines a set

of program restructuring operations (refactorings) that support the design, evolution

and reuse of object-oriented application frameworks. Although Opdyke discusses the

refactorings in terms of source code changes, most of them could be performed on a

sourceless intermediate code format. In such a system, the refactorings would be very

similar to the modifications allowed by type adaptation.

Palsberg and Schwartzbach have recognized a similar problem with traditional re-

use mechanisms and have proposed a type substitution mechanism aimed at maximiz-



17

ing code reuse [PS90]. However, for the scenario outlined here, their solution is both

too general and too restricted: too general because in the presence of subtype polymor-

phism it may require the re-typechecking of a component’s implementation, and too re-

stricted because it does not allow adding new methods or renaming methods. Thus, a

system using type substitution could only partially solve the integration problems we

encountered in this paper.

The Mjølner BETA fragment system [MPN89] is a grammar-based programming

environment designed to customize and assemble program fragments. A fragment is

any sequence of terminal and nonterminal symbols derived from a nonterminal symbol.

Fragments may define interfaces or implementations, and in principle one interface

fragment could have several implementation fragments. Most importantly, fragments

can be plugged into empty “slots” of other fragments, providing for a very flexible pro-

gram integration system. While the mechanisms of post-facto type adaptation and the

fragment system are closely related, the underlying design and reuse philosophy of

BETA / Mjølner is very different from ours since it is intended for planned reuse only.

Extending the fragment system to incorporate type adaptation would be a promising

area for future research.

The prototype of the Jade programming environment for Emerald described by

Raj [RL89] is similar to BETA’s fragment system. A piece of code can be left partially

unspecified, and the code piece’s habitat describes the required interface of the unspec-

ified parts. Jade is interesting because the underlying programming language, Emerald,

does not provide inheritance and thus does not by itself support code reuse. That is, the

Emerald / Jade combination treats reuse at the level of the programming environment

rather than at the language level. Like BETA / Mjølner, Jade emphasizes planned reuse

only and therefore does not directly address the integration problem.

8 Conclusions

We have examined problems likely to occur in a world where reuse is pervasive and

components are designed by independent organizations. In such a world, a large part of

every application would consist of reusable components, and applications would com-

bine many different components or frameworks. The interfaces and type hierarchies of

components must be expected to be slightly inconsistent in relation to each other (even

if the individual components are perfectly self-consistent) because the sheer number of

different components would make perfect coordination impractical.

Today’s programming languages and environments rely on components to be

well-integrated and do not handle the integration of independently developed compo-

nents well. Even slight inconsistencies can lead to integration problems that cannot be

handled satisfactorily with the reuse mechanisms available in current languages. Wrap-

pers create redundant type hierarchies and make programs harder to understand and

change, and the wrapping and unwrapping of objects can incur performance problems.

Typing mechanisms usually cannot solve the problems because existing component

types and type hierarchies cannot be adapted; factory objects combined with multiple

subtyping can solve simple problems but do not scale well. A language with multiple

dispatch on argument types (not classes) could solve most adaptation problems at the



18

expense of language complexity, but no current object-oriented language offers the

combination of these features. Even dynamically-typed languages suffer from adapta-

tion problems, although they are usually somewhat better off than their statically-typed

counterparts.

We believe that it is helpful to adopt a broader view of reuse mechanisms that

does not center around perfectly coordinated components and pure compiled-code re-

use. Future programming language / environment combinations should allow the reuser

to change component types and type hierarchies in place to integrate components with

each other; component interfaces should not be completely frozen as they are today.

Component implementations may best be delivered in an intermediate format so that the

new flexibility can be combined with efficient execution.

We have proposed a new reuse mechanism, type adaptation, that is based on pre-

vious ideas by Horn, Sandberg, and Pedersen. It can adapt a component in restricted

ways without requiring access to the component’s implementation and without re-

typechecking it. With mechanisms such as type adaptation or Ossher and Harrison’s ex-

tension hierarchies, we may come one step closer to reaching the dream of pervasive

reuse.

Acknowledgments: I would like to thank David Ungar for his continuous guidance and

support; I am also very grateful for the support provided by Sun Microsystems Labora-

tories. Ole Agesen, Lars Bak, Bay-Wei Chang, David Cheriton, Craig Chambers, John

Maloney, Jens Palsberg, Clemens Szypersky, and the anonymous reviewers provided

valuable comments on earlier drafts of this paper. Many thanks also go to Peter Kessler

and Alan Snyder for discussions on the subject of integration.

References

[ADL91] Rakesh Agrawal, Linda G. DeMichiel, and Bruce G. Lindsay. Static Type-

Checking of Multi-Methods. In OOPSLA ‘91 Conference Proceedings, pp. 113-

128, Phoenix, AZ, October 1991. Published as SIGPLAN Notices 26(11),

November 1991.

[AL90] Pierre America and Frank van der Linden. A Parallel Object-Oriented

Language with Inheritance and Subtyping. In ECOOP/OOPSLA ‘90 Confer-

ence Proceedings, pp. 161-168, Ottawa, Canada, October 1990. Published as

SIGPLAN Notices 25(10), October 1990.

[App92] Apple Computer, Eastern Research and Technology. Dylan, an object-oriented

dynamic language. Apple Computer, Cupertino, CA, April 1992.

[BC90] Gilad Bracha and William Cook. Mixin-Based Inheritance. In ECOOP/

OOPSLA ‘90 Conference Proceedings, pp. 303-311, Ottawa, Canada, October

1990. Published as SIGPLAN Notices 25(10), October 1990.

[Ber90] Lucy Berlin. When Objects Collide: Experiences with Reusing Multiple Class

Hierarchies. In ECOOP/OOPSLA ‘90 Conference Proceedings, pp. 181-193,

Ottawa, Canada, October 1990. Published as SIGPLAN Notices 25(10), October

1990.



19

[CW85] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction,

and Polymorphism. Computing Surveys 17(4), pp, 471-522, December 1985.

[Cha92] Craig Chambers. Object-Oriented Multimethods in Cecil. In ECOOP ‘92

Proceedings, pp. 33-65, Utrecht, The Netherlands, June 1992. Published as

Springer Verlag LNCS 615, Berlin, Germany 1992.

[Cha93a] Craig Chambers. The Cecil Language—Specification and Rationale. Technical

Report 93-03-05, Computer Science Department, University of Washington,

Seattle 1993.

[Cha93b] Craig Chambers. Predicate Classes. In ECOOP ‘93 Conference Proceedings,

Kaiserslautern, Germany, July 1993.

[CC+89] Peter Canning, William Cook, Walter Hill, and Walter Olthoff. Interfaces in

strongly-typed object-oriented programming. In OOPSLA ‘89 Conference

Proceedings, pp. 457-468, New Orleans, LA, October 1989. Published as

SIGPLAN Notices 24(10), October 1989.

[Cox86] Brad Cox. Object-Oriented Programming: An Evolutionary Approach.

Addison-Wesley, Reading, MA 1986.

[DG87] Linda G. DeMichiel and Richard P. Gabriel. The Common Lisp Object System:

An Overview. In ECOOP ‘87 Conference Proceedings, pp. 223-233, Paris,

France, June 1987. Published as Springer Verlag LNCS 276, Berlin, Germany

1987.

[Deu83] L. Peter Deutsch. Reusability in the Smalltalk-80 Programming System.

Proceedings of the Workshop on Reusability in Programming, p. 72-76.

Newport, RI, September 1983.

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference

Manual. Addison Wesley, Reading, Ma 1990.

[Hor87] Chris Horn. Conformance, Genericity, Inheritance and Enhancement. In

ECOOP ‘87 Conference Proceedings, pp. 223-233, Paris, France, June 1987.

Published as Springer Verlag LNCS 276, Berlin, Germany 1987.

[HU92] Urs Hölzle and David Ungar. The Case for Pure Object-Oriented Languages. In

Proceedings of the OOPSLA ‘92 Workshop on Object-Oriented Languages:

The Next Generation. Vancouver, Canada, October 1992.

[JR92] Paul Johnson and Ceri Rees. Reusability through Fine-grain Inheritance. Soft-

ware—Practice and Experience 22(12), pp. 1049-1068, December 1992.

[KM+87] B. B. Kristensen, O. L. Madsen, B. Møller-Pedersen and K. Nygaard. The BETA

Programming Language. In B. Shriver and P. Wegner (eds.), Research Direc-

tions in Object-Oriented Programming, pp. 7-48. MIT Press, Cambridge, MA

1987.

[Lie88] Henry Lieberman. Position Statement in the Panel on Varieties of Inheritance.

In Addendum to the OOPSLA ‘87 Proceedings, p. 35. Published as SIGPLAN

Notices 23(5), May 1988.

[LVC89] Mark A. Linton, John Vlissides, and Paul Calder. Composing user interfaces

with Interviews. IEEE Computer Magazine, February 1989.



20

[Lin92] Mark A. Linton. Encapsulating a C++ Library. Proceedings of the 1992 Usenix

C++ Conference, pp. 57-66, Portland, OR, August 1992.

[Mag91] Boris Magnusson. Position statement during the ECOOP ‘91 Workshop on

Types, Geneva, Switzerland, July 1991.

[MPN89] Ole Lehrmann-Madsen, Birger Møller-Pedersen, and Kristen Nygaard. The

BETA Programming Language—A Scandinavian Approach to Object-Oriented

Programming. OOPSLA ‘89 Tutorial Notes, New Orleans, LA, October 1989.

[Moo86] David A. Moon. Object-Oriented programming with Flavors. In OOPSLA ‘86

Conference Proceedings, pp. 1-8, Portland, OR, October 1986. Published as

SIGPLAN Notices 21(11), November 1986.

[Mey91] Bertrand Meyer. Eiffel—The Language. Prentice Hall, New York 1991.

[OH92] Harold Ossher and William Harrison. Combination of Inheritance Hierarchies.

In OOPSLA ’92 Conference Proceedings, pp. 25-43, Vancouver, Canada,

October 1992. Published as SIGPLAN Notices 27(10), October 1992.

[OO88] Panel: Experiences with reusability. In OOPSLA ‘88 Conference Proceedings,

pp. 371-376, San Diego, CA, September 1988. Published as SIGPLAN Notices

23(11), November 1988.

[OO90] Panel: Designing Reusable Designs: Experiences Designing Object-Oriented

Frameworks. In Addendum to the OOPSLA/ECOOP ‘90 Conference Proceed-

ings, pp. 19-24, Ottawa, Canada, October 1990.

[Opd92] W. F. Opdyke. Refactoring Object-Oriented Frameworks. Ph. D. Thesis,

Department of Computer Science, University of Illinois, Urbana-Champaign

1992. Published as Technical Report UIUCDCS-R-92-53097.

[OSF91] Open Systems Foundation. OSF Architecture-Neutral Distribution Format

Rationale. Open Systems Foundation, June 1991.

[Par72] David Parnas. On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12), December 1972.

[Ped89] Claus H. Pedersen. Extending ordinary inheritance schemes to include general-

ization. In OOPSLA ‘89 Conference Proceedings, pp. 407-417, New Orleans,

LA, October 1989. Published as SIGPLAN Notices 24(10), October 1989.

[PS90] Jens Palsberg and Michael Schwartzbach. Type substitution for object-oriented

programming. In ECOOP/OOPSLA ‘90 Conference Proceedings, pp. 151-160,

Ottawa, Canada, October 1990. Published as SIGPLAN Notices 25(10), October

1990.

[RL89] Rajendra K. Raj and Henry K. Levy. A Compositional Model for Software

Reuse. Computer Journal 32(4), pp. 312-322, 1989.

[RTK91] Rajendra K. Raj, Ewan Tempero, and Henry K. Levy. Emerald: A General-

Purpose Programming Language. Software—Practice and Experience 21(1),

pp. 91-118, January 1991.



21

[San86] David Sandberg. An Alternative to Subclassing. In OOPSLA ‘86 Conference

Proceedings, pp. 424-428, Portland, OR, October 1986. Published as SIGPLAN

Notices 21(11), November 1986.

[Szy92] Clemens Szypersky. Extensible Object-Orientation. In Proceedings of the

OOPSLA ‘92 Workshop on Object-Oriented Languages: The Next Generation.

Vancouver, Canada, October 18, 1992.

[Tem90] Josef Templ. Compilation Speed of the SPARC Oberon Compiler. Personal

communication, April 1990.

[US87] David Ungar and Randall B. Smith. SELF—The Power of Simplicity. In

OOPSLA ‘87 Conference Proceedings, pp. 227-242, Orlando, FL, October

1987. Published as SIGPLAN Notices 22(12), December 1987.

[WGM88] André Weinand, Erich Gamma, and Robert Marty. ET++—An Object-Oriented

Application Framework in C++. In OOPSLA ‘88 Conference Proceedings, pp.

168-182, San Diego, CA, October 1988. Published as SIGPLAN Notices 23(11),

November 1988.


